Wednesday, September 17, 2014

Get to Know the Halophyte Crops

For now just a personal bookmark.
If the idea of greening deserts with canals of seawater pans out we'll be back with more.
From Aeon Magazine:
Ever since ancient times, the sowing of salt has been synonymous with severe and deadly retribution. The Roman general Scipio Africanus the Younger was said to have ended the Third Punic War in 146BC by razing Carthage, enslaving its population and spreading salt on its fields. In the biblical book of Judges (9:45), the brutal and unprincipled King Abimelech laid siege to the Canaanite city of Shechem. ‘He took the city,’ the biblical story says, ‘and slew the people that was therein, and beat down the city, and sowed it with salt.’
Salt kills most plants. In fact, it attacks them in much the same way that carbon monoxide kills humans. In cases of carbon monoxide poisoning, CO molecules exhaust the carrying capacity of your red blood cells, depriving your body of the oxygen it needs. Likewise, most terrestrial plants soak up the sodium ions and sodium chloride from salt much faster than they can absorb essential nutrients such as potassium, calcium and magnesium. Without those nutrients, they perish. Spread salt on the fields of your enemies and their crops will fail.

More than 97 per cent of the water on Earth is saline. Wouldn’t it be cruel if nature had locked up the vast bulk of the planet’s vital fluids in a form that no plant could drink? Well, as it happens nature is not quite that cruel. Of the 400,000 flowering plant species around the world, 2,600 do drink seawater. They are halophytes, meaning ‘salt-plant’, and they might just be the answer to a question surprisingly few governments have yet asked: namely, how can we put our planet’s practically infinite volumes of saltwater to good use?

It might not be immediately obvious why such a question is worth our time. But consider: between sea-level rise and the increase in droughts and floods, the acreage available for conventional, freshwater agriculture is shrinking rapidly. Freshwater aquifers are becoming increasingly salty: among them, the Ogallala Aquifer, which covers a quarter of the irrigated land in the US. And so one of the world’s most important breadbaskets is under threat. Elsewhere, one-sixth of the world’s population relies on Eurasian rivers that trace back to Himalayan glaciers, which are themselves disappearing because of climate change....MORE
Additionally:
Royal Kew: "Salt Tolerance (eHALOPH)"
DesertCorp
US Salinity Laboratory: Research Databases
USDA: Salt-Tolerant Plants
Boston University BU Today: Lessons from Venice